
1

EXECUTABLE FORMAL MODELS FOR VALIDATION AND SPECLESS
VERIFICATION

David Greve, Rockwell Collins, Cedar Rapids, IA
Matthew Wilding, Rockwell Collins, Cedar Rapids, IA

Abstract
Verification and certification of flight critical

software and application-specific integrated circuits
(ASICs) is currently a labor-intensive, manual
process involving extensive testing, inspections,
and process documentation. The complexity of
these systems and devices will increase both
because increases in cockpit automation and
application integration offer important safety
benefits and because astonishing improvements in
digital computing technology can potentially
improve performance and decrease cost. The
current approach to verification and certification
will be challenged by this increased complexity. In
order to reap fully the benefits of these
technological advances we must develop new
methods for verification and certification of flight
critical devices that provide higher degrees of
assurance for increasingly complex systems while
simultaneously streamlining the verification
process.

The development of executable formal models
may offer higher degrees of assurance, address
increased complexity, and streamline certain
aspects of the verification process. Increased
assurance can be obtained as a result of rigorous,
mechanical, mathematically complete checks of
consistency and completeness of system
requirements as well as proofs of correctness of
specific implementations. As vector-based testing
becomes increasingly inadequate to assure
correctness in the face of exponentially growing
state space, formal proofs of correctness can
encompass the entire design, demonstrating
correctness once and for all. In addition, executing
real world stimulus on a formal model helps allay
concerns about inconsistencies between the model
used to support reasoning and the actual
implementation. Formal models representing
specific implementations can also be used to
support specless verification activities such as

product family verification, symbolic simulation,
and self-checking tool arrangements.

1. The Verification Challenge
Technological advances in the commercial

realm are driving electronics prices lower while
providing improvements in performance. Mass
production and economies of scale have allowed
incredible price/performance ratios and the
accelerated pace of technology development and
deployment has led to ever greater time-to-market
pressures on technology producers. These trends in
the everyday consumer electronics arena create the
expectation that, even in a safety critical market
such as avionics, cost and time to market should
decline and that performance and functionality
should improve. As a result of these and other
forces, avionics systems are becoming increasingly
complex.

These same trends, however, could have a
negative impact on overall system safety. As
complexity increases, the effort required to provide
the same level of operational assurance increases as
well. If left unchecked, simple state space
arguments predict that a linear increase in
complexity can result in an exponential increase in
the effort required to provide a particular level of
assurance. Even in the face of this additional
complexity demand for improved safety continues
to increase. The objective of NASA's current
Aviation Safety Program, for example, is not
simply to maintain current levels of safety, but to
improve safety [6]. Obtaining such improvement in
the face of increasing complexity and pressures to
reduce overall costs will require advances on many
fronts.

While classical verification has served us well
in the past, it appears that new verification
approaches will be needed to control verification
costs and to provide improved safety in the face of
increasing complexity. The challenge, therefore, is
to find new verification techniques whose

2

capabilities will scale to match the complexity of
newer systems.

1.1 Formal Methods
One possible technique for addressing the

verification challenge is the use of formal methods.
The term “formal methods” describes a discipline
in which mathematical specification and reasoning
are applied to the development of digital systems.
The adjective “formal” is often used in the sense of
process, meaning that the process adheres to
conventional or accepted methods or standards of
operation. In contrast, the “formal” in “formal
methods”, is used in the sense of mathematics,
meaning that these methods employ logic, rules of
inference, and languages with rigorously defined
semantics. The use of formal methods does not
exclude the use of a formal process. On the
contrary, rigorous mathematical analysis of systems
will prove most beneficial when performed as part
of a well-defined verification process. The
guidelines set forth in both DO-178B and DO-254,
for example, describe how formal methods can be
used in the context of a formal process to support
certification of avionics systems.

The application of formal methods requires
the development of formal models. A formal
model is a model constructed in a language with a
formal semantics, which is to say that the meaning
of each language construct is precisely, and
completely defined. Certain formal languages can
be used in conjunction with a proof engine. A proof
engine is an automated tool for applying logical
rules of inference to the constructs of a language.
Such engines enable mechanical, mathematical
proofs of model properties. Theorem provers,
model checkers, and equivalence checkers are all
examples of different types of proof engines. The
capstone of formal methods is formal verification.
Formal verification is a procedure by which an
implementation is mathematically proven to
implement its specification. Note that formal
verification, by definition, requires a formal model
of both the implementation and the specification.

The primary purpose of formal verification
is to demonstrate that, under all conditions of
interest, a particular design performs as specified.
The result of such a proof is confidence that, under
any condition of interest, no matter what input
stimuli is applied, a design will operate as expected.

Note that this assurance can be provided without
running test vectors against the design. It doesn’t
matter how large the state space of the device is,
because a formal proof of correctness can account
for every one of the very large number of states the
design might experience. Formal methods,
therefore, have the potential to provide the crucial
scaling property we are looking for in verifying
increasingly complex designs.

Formal verification, however, is not a
panacea for the verification challenge. One issue is
model validation: what assurance is there that the
final statement of correctness about a formal model
applies directly to the physical system being
reasoned about? While one might claim that formal
verification establishes the correctness of a
particular design, such a proof is of little value
unless the model used during formal verification
accurately represents the final device. Another
fundamental issue is determining how to apply
formal methods effectively to a complex design.
While extensive informal documentation of system
requirements is commonplace, it is unusual in
practice to find precise formal system specifications
against which a particular implementation can be
proven correct. This paper discusses executable
formal models and how they assist in the model
validation process as well as techniques for
applying formal methods to establish certain useful
system properties without the need for extensive
formal modeling or complete formal verification.

2. Model Validation
A model is a simplified replica or

representation of a physical or logical object.
Newton's laws of gravity are an example of a model
of gravitational attraction. Because it is simplified,
a model does not exhibit all of the possible
behaviors of the modeled object. In order for a
model to be useful it must, of course, reflect the
characteristics of the object that influence the
desirable properties of the object. More to the
point, the model must exhibit influential
characteristics of an object with sufficient fidelity to
predict pertinent behavior of the actual object
accurately. Newton’s laws of gravity predict with
sufficient accuracy the behavior of pendulums and
the fall of objects in a vacuum. They are, however,
not capable of predicting the gravitational lens
effect or the idiosyncrasy of the orbit of Mercury

3

around the sun. We see from this example that if
we want to be able to depend on Newton’s laws we
must make sure that they work well enough for our
purposes under the conditions of interest.

Model validation involves comparing the
desired or measured behavior of an object with the
behavior predicted by a model of that object.
Model validation is inherently informal (not
mathematically rigorous), so when we say a model
has been validated, we mean that we believe that it
exhibits the expected behavior under some
sufficient set of conditions. Newton’s laws of
gravity, for example, were validated through
experiment and observation for slow moving,
massive objects in relatively weak gravitational
fields.

There are several ways in which a formal
model can be validated. Rigorous walk-throughs
are an example of one validation technique. Our
focus, however, is on another validation technique:
simulation. Simulation of a model involves
computing the response of the model to a set of
input stimuli. Simulation helps guarantee that a
specification meets its expectations, it allows for the
testing of a particular implementation against
functional and regression test suites, and it enables
designers to explore system level integration issues
early in the design process. Simulation of formal
models, however, is practical only if the formal
models are executable. Executable formal models
are the crucial link between formal proofs of
correctness and the physical devices being
constructed. Executable formal models are formal
models that can be evaluated efficiently on concrete
input data to produce observable output [4]. Such
models must execute efficiently because they must
be capable of running large tests in an acceptable
time period. They must produce observable output
so that the generated results can be compared with
the expected results. Model validation using
executable formal models can take many forms
including rectifying specifications and expectations,
contributing to system level co-design, assuring
model maintenance, establishing a service history,
and regression testing.

2.1 Specification versus Expectation
A formal specification is a rigorous

description of how a system operates. An
expectation is an informal notion of how the user

and designer intend the system to operate. It is
important to note that agreement on a specification
does not imply agreement on design intention.
Specifications are formalized expectations.
Expectations that are not included in the
specification are, by definition, not formalized. The
difference between the formalized specification and
design intentions is called the expectation gap. It
is often the case that what people refer to as bugs in
a system are actually conditions that fall in the
expectation gap: conditions for which the user or
designer has some expectation but for which there
exist no formal specification. For example, it is a
bug if a subroutine designed to increment a number
returns the value of 3 when passed the value 1.
What if, instead, the subroutine returned the
expected value of 2 but required hours to do so? Is
that a bug? Perhaps the specification merely states
that the subroutine is supposed to increment a
value, which it does. Implicitly, however, one
expects this operation to be performed in reasonable
time. This is an example of a case that lies in the
expectation gap: an implementation that meets its
specification but fails to meet an expectation.

Formal methods can be applied to formal
specifications to prove that they are self-consistent
and complete. Self-consistent means that there is
no set of conditions under which the device is
required to perform contradictory functions. A
specification is complete if, for the list of identified
conditions, the specification covers every possible
combination of conditions. It is important to note
that formally complete does not mean that the list of
possible conditions has been exhausted. It can be
the case that there are conditions that lie in the
expectation gap that are not recorded in the
specification. As a result, despite all of their
potential, formal methods cannot prove the absence
of an expectation gap. This is not to say that
expectations cannot be formalized as requirements.
What it does mean, however, is that there is no
rigorous way to demonstrate that every expectation
is covered by a specification.

What then can be done? A rigorous review
cycle can help substantially reduce and even
eliminate the size of the expectation gap. Such
reviews, however, are sometimes most appropriate
for the designer who is intimately familiar with the
impact of various design decisions. It is sometimes
more difficult to communicate such concerns with

4

the users of the system, especially if the users are
not familiar with the specification language.

Executable formal models can be used to
explore the ramifications of different design
decisions. Because the models are formal, they can
be shown to be self-consistent and complete. In
addition, because the models are executable, they
can be used to animate the specification in a way
that makes sense to both the designer and the user
of the system. As a result, differences between the
system implementation and the expectation of the
designers and users can be resolved early in the
design process, thus helping to diminish the
expectation gap. In a paper discussing methods for
reducing the potential for mode confusion in
avionics systems it was reported that, "Our
experiences to date have shown that, if anything, we
underestimated the power of [animating the
specification]. In every demonstration, the
visualization has generated vigorous, positive
debate between [the developers and the users].”[2]

2.2 Co-Design
Abstraction is the process of refining a

complex system into a simpler system that retains
the properties of interest. An abstract description of
a system is one that concentrates the essential
characteristics of that system while eliminating
irrelevant details. In order for the top-level
specifications of complex systems to be tractable,
they must be stated abstractly in terms of their
composite subsystems. It is impossible in complex
systems to enumerate all of the subsystem states
and all of the internal conditions that may arise. A
good specification, therefore, encapsulates the
complexity of the subsystems and then uses
properties of these abstract subsystems to express
the expected behavior of the overall system.
Unfortunately, the process of abstracting these
subsystems gives rise to the potential for
incompleteness (in the sense of expectations) in the
top-level specification. As a result, careless
abstraction can result in expectation gaps in the
specification of the final, integrated system.

One way of addressing the problem of top-
level system integration is co-design. Co-design is
a technique that involves writing descriptions of
each of the components of a complex design and
combining them in a unified environment that
allows testing and analysis of the system as a

whole. This methodology allows analysis of a wide
variety of test cases and helps to validate the
behavior of the top-level system against system
expectations. This kind of early testing and
analysis allows the designer to identify system-level
problems quickly and to deal with them early in the
design cycle.

Executable formal models can be powerful
components in the co-design process. The fact that
the models are expressed formally allows proofs of
correctness to be performed to justify each step in
the abstraction process. This provides confidence
that the abstraction does not result in (formal)
incompleteness in the top-level specification.
Because such models are executable it is also
possible to integrate them at the system level and
perform testing to help identify unexpected
interactions between modules early in the design
cycle.

2.3 Maintenance
A model can reflect the behavior of a

system accurately only if the model evolves with
changes in the system. One challenge experienced
in the modeling of complex systems is the
maintenance of the models themselves. As design
specifications and implementations evolve over
time, the models of those systems must be updated
to reflect the changes. If a model is not an integral
part of the design process, it is easy for it to fall into
disrepair and eventually become useless in
predicting the behavior of the system. It is crucial,
therefore, to inject formal modeling into the design
process. It is possible to dictate such actions
through a rigorous design process, but it is more
natural to make such modeling part of the process if
the model contributes directly to the design. This
situation is most easily attained if the formal model
can act in the role of a simulator. It is exactly this
situation that is enabled by executable formal
models.

2.4 Service History
The perceived validity of a model is related

to the service history of that model. As a result,
service history is an important factor in establishing
confidence in the correctness of a particular design.
It is quite likely that a brand new piece of software
will contain bugs. However, a piece of software
that has been actively and successfully used in the

5

field for many years is less likely to have bugs.
When one is in the position of establishing
confidence in a model, one should consider its
service history. Being able to compare the
performance of a model against millions of
different test cases provides a substantial degree of
confidence in the model. In addition, a model that
is used as a simulator as an integral part of the
design process will have fewer bugs than one
developed as an aside in a vacuum. By enabling the
use of formal models as simulators, executable
formal models provide a means of achieving a
substantial service history for formal models of a
system.

2.5 Testing
Testing is another means for establishing

the validity of a model. Current verification
techniques rely extensively on testing. While
simple state space arguments make clear that
exhaustive testing is impossible, even for
moderately complex designs, testing has been
sufficient to provide, in part, the impressive level of
safety we currently enjoy. Formal verification, on
the other hand, promises to provide a
comprehensive correctness guarantee by virtue of a
single proof. Such claims, however, are only as
valid as the model upon which they are based. How
does one use formal verification to extend our
current capabilities and provide greater degrees of
assurance in the verification process?

Executable formal models may provide part
of the answer since they allow us to leverage both
testing and formal verification. By executing
regression tests on the formal model itself, one has
the assurance that the model actually represents the
system under development. This work can then be
extended though formal verification to support the
proof that the system model is correct under all
circumstances.

While the above technique focuses on the
implementation, it is also possible to use executable
formal models to test the system specification.
While this may seem redundant, given that tests are
frequently derived from the system specification, it
makes sense when one looks at the tests as
implicitly embodying the specification. Given that
the tests are a reformulation of the specification, it
makes sense to check for consistency between the
tests and the specification.

2.6 Summary
Executable formal models provide a crucial

link between current design and verification
practice and the grand promise of formal
verification. Such models extend the impact of
formal verification by contributing to the entire
design and verification lifecycle. Executable
formal models contribute to the early portions of the
process by providing a means of rectifying
specifications and expectations as well as a means
for performing system level co-design. The models
are maintained and acquire a service history
because they are tied to crucial design and
verification activities such as simulation. Finally,
executable formal models are tied to the final
implementation through regression testing, thus
providing confidence that top-level proofs of
correctness apply to the actual physical device
being produced.

3. Specless Verification
While extensive informal documentation of

system requirements is commonplace, it is unusual
in practice to find precise formal system
specifications against which a particular
implementation can be proven correct. Without a
formal specification, it is of course impossible to
prove the correctness of a given implementation. Is
there a place for formal methods in such situations?

In this section we discuss three situations
that allow for the application of what we call
specless verification. Specless verification does
not necessarily mean that there is no specification.
Rather, it means that the specification is implicit or
derived from existing artifacts. The three situations
we consider are product family verification,
symbolic simulation, and self-checking tool
arrangements.

3.1 Product Family Verification
Product family verification is the process

of establishing that the behavior a new member of a
product family is a superset of some previous
member of that family. It is sometimes the case
that service history and sunk cost is a deciding
factor in the design of new systems. An old design
with substantial service history can become a de
facto specification and making the new design work
just like the old becomes the design specification.

6

Sometimes the reason is legacy: there is a large
library of software or several systems that were
designed and verified around the features of the
original design. Sometimes the reason is
certification costs: changing one aspect of the
system design would require re-certification of the
entire design. Consequently, even in the absence of
a formal specification, given a validated formal
model of an implementation of a previous member
of the product family one can formally verify that a
new implementation of that design implements the
old design under the conditions of interest.

3.2 Symbolic Simulation
Another form of specless verification is

symbolic simulation. Symbolic simulation is the
partial evaluation of a formal model on an
incompletely specified, or symbolic, state [5].
Normally, in order to simulate the behavior of a
system, one must specify the value of each of the
inputs required during simulation. The result of
such simulation is a set of output expressed as
numeric values. Symbolic simulation, however,
allows one to simulate the behavior of a system for
all possible input values. The result of a symbolic
simulation is an algebraic expression that represents
the behavior of that system for every possible value
of the input.

The primary purpose of symbolic
simulation is to extract specific behavior from a
complex design and to allow the designer to decide
whether this behavior is correct. Symbolic
simulation is truly a form of specless verification,
since no formal proof is performed. The types of
errors most easily detected by symbolic simulation
involve extraneous dependencies and unintended
side effects. Given such manual inspections, this
technique works best when the desired behavior can
be expressed concisely and there exists a
constructive technique for mapping (abstracting)
the implementation to this concise behavioral
description. Without a constructive mapping to a
concise description, the symbolic expression for the
system functionality can become overwhelmingly
complex and human inspection is rendered
impractical.

Even in cases where the expressions
resulting from symbolic simulations are too
complex to be evaluated manually, they can still be
used to perform formal regression testing. After

storing the symbolic execution results from a
baseline design, one can modify the design and
derive a new symbolic expression. Formal proofs
can then be carried out to isolate those cases in
which the modified design differs functionally from
the baseline design. The proofs that succeed
demonstrate that the functionality of the design
under those conditions remains unchanged. The
proofs that do not succeed provide information to
the designer concerning those cases where the
design has been modified. Such results can be
useful in detecting unexpected system performance
changes due to localized changes in the design.

While we currently consider effective use
of symbolic simulation a research topic, we note
that EDA companies Innologic Systems Inc. and
Chrysalis both provide commercial tool support for
performing symbolic simulation of hardware
designs expressed in hardware description
languages.

3.3 Self-Checking Tool Arrangements
Although in this paper we are primarily

focusing on establishing the correctness of an
implementation of a particular design, there are
other applications of formal methods that can
establish the correctness of other tools used in the
design chain. Such techniques are particularly
interesting when organized in a self-checking tool
arrangement [3]. Two examples of such
applications are hardware synthesis checkers and
software compiler checkers.

3.3.1 VHDL Equivalence

The use of hardware design languages such
as VHDL and Verilog poses a problem to those
working on high criticality hardware designs: how
does one guarantee that the synthesis process does
not introduce errors into the design? In particular,
how does one trace the resulting design artifact
back to the original design requirements? Design
reviews, for example, typically take place at the
source code level since it is impractical to read the
output of most VHDL compilers. Exacerbating the
problem, HDL compilers are complex software
systems that must deal with complex languages
such as VHDL and Verilog. Given this situation,
there is naturally concern about the possibility of
inadvertently introducing design errors during the

7

synthesis process. How does one then justify the
use of hardware description languages and
sophisticated hardware compilers on safety critical
systems?

One possible answer is simply to test the
synthesized netlist against the original HDL.
Unfortunately, exhaustive testing of the synthesized
netlist of a large design might take days, weeks,
months – or longer. A relatively new formal
verification technique called equivalence checking
is able to demonstrate whether two designs are
functionally equivalent, and do so in time that is
similar to that required by the compilation process.
Such low level equivalence checkers provide
confidence that the design has not in some way
been corrupted during the synthesis process, and
guarantees that no single fault, either in the
synthesizer or in the equivalence checker, will
result in an error.

It is interesting to note that, in this context,
the executable formal model is the design as
expressed in the HDL. The tools that have been
developed to perform equivalence checking have
formalized a subset of either VHDL or Verilog and
used that formalism as part of their proof. Of
course, VHDL and Verilog both have very mature
simulation environments, so such hardware
description languages might be considered among
the most popular, commercially available
executable formal models.

3.3.2 Compiler Checker

While equivalence checkers can play an
important role in the verification of synthesized
hardware, such tools are perhaps even more
important when one considers software. While one
can imagine exhaustive testing of appropriately
designed hardware, even the simplest software is
impossible to test exhaustively. Stringent testing
criteria have been established to help ensure the
absence of compiler bugs in compiled code destined
for the most critical applications. However,
equivalence checking of executable object code
against its original software source code might
provide a means for reducing the testing burden on
software developer and improve the likelihood of
detecting compiler errors [1].

A proof of the correctness of object code
generated by a compiler is not as easy as

performing equivalence checking on hardware.
Nonetheless, because the generated object code will
tend to have structure similar to that of the source
code, this kind of proof may still be easier than
other possible challenges, such as a proof of the
correctness of the compiler itself. Such a checker
would confirm that the behavior of the object code
is equivalent to the behavior of the source code
specification. Note that this does not guarantee that
the original source code was correct, only that the
compiler did not distort its meaning. The ability to
perform such a proof would also provide assurance
in the software development process that no single
fault, either in the compiler or in the compiler
checker, will result in an error.

Note that executable formal models could
play an important role in the development of
compiler checkers. If it were possible to synthesize
executable code directly from a formal model, the
model itself would be the source level specification
against which the object code is compared. This
would save the step of formalizing the semantics of
an arbitrary programming language, such as Ada or
C.

3.3 Summary
Formal verification holds great promise for

addressing the complexity of modern systems, but it
will require a change in the current design and
verification paradigm. Specless verification,
verification in which the specification is implicit or
derived from existing artifacts, is a type of formal
verification that does not require a radical change in
the way things are currently done. Product family
verification, symbolic simulation, and self-checking
tool arrangements are all specless verification
techniques that can provide an incremental
improvement in over current practice without
requiring radical changes to the design and
verification process.

4. Conclusion
Avionics systems suppliers are being driven

to track commercial computer trends and to provide
increased functionality and performance at lower
cost. In order to reap fully the benefits of these
technological advances we must develop new
methods for the verification of flight critical devices
that provide higher degrees of assurance for

8

increasingly complex systems while simultaneously
streamlining the verification process. While
classical verification has served us well in the past,
it seems likely that new verification approaches will
eventually be necessary to control verification costs
and to provide improved safety in the face of
increasing complexity.

Formal methods have the potential to
provide the crucial scaling property we are looking
for in verifying complex designs. Two of the issues
facing the application of formal methods today are
model validation and a means for incremental
adoption of the techniques. We have outlined how
executable formal models can be used to address
the issues associated with model validation, issues
such as minimization of the expectation gap,
regression testing, assuring model maintenance,
establishing a service history, and system level co-
design. We have also illustrated several specless
verification techniques: symbolic simulation,
product family verification, and self-checking tools.
These approaches can provide an incremental
improvement to the current process while preparing
the way for a more comprehensive application of
formal methods in the future.

References
[1] Yuan Yu, 1992, “Automated Proofs of Object
Code for a Widely Used Microprocessor”, PhD
thesis, The University of Texas at Austin

[2] Steven Miller, James Potts, 1999, “Detecting
Mode Confusion Through Formal Modeling and
Analysis”, NASA/CR-1999-208971

[3] David Greve, Matthew Wilding, Mark Bickford,
David Guaspari, 2000, “Orpheus: A Self-Checking
Translation Tool Arrangement for Flight Critical
Hardware Development”, Langley Formal Methods
Workshop (LFM00).

[4] Matthew Wilding, David Greve, David Hardin,
2000, “Efficient Simulation of Formal Processor
Models”, Formal Methods in System Design
(FMSD), Kluwer Academic Publishers (to appear).

[5] David Greve, 1998, “Symbolic Simulation of
the JEM1 Microprocessor”, Formal Methods in
Computer Aided Design 1998, Springer-Verlag
Lecture Notes in Computer Science volume 1522.

[6] http://avsp.larc.nasa.gov

	Abstract
	1. The Verification Challenge
	1.1 Formal Methods

	2. Model Validation
	2.1 Specification versus Expectation
	2.2 Co-Design
	2.3 Maintenance
	2.4 Service History
	2.5 Testing
	2.6 Summary

	3. Specless Verification
	3.1 Product Family Verification
	3.2 Symbolic Simulation
	3.3 Self-Checking Tool Arrangements
	3.3.1 VHDL Equivalence
	3.3.2 Compiler Checker

	3.3 Summary

	4. Conclusion
	References

