
Rockwell Collins

Using a Single-Threaded Object to Speed

a Veri�ed Graph Path�nder

Matthew Wilding

Rockwell Collins, Inc.

Advanced Technology Center

mmwildin@collins.rockwell.com

Abstract

We have written hardware simulators in ACL2 in order to unify high-

speed simulators and formal analysis models [2, 7]. The techniques used

for these simulators extend to other kinds of software, which we demon-

strate in this paper by implementing a much faster version of an algorithm

for graph path�nding previously veri�ed by J Moore using ACL2 [5]. This

exercise also highlights a weakness in ACL2: the occasional need to add

computational complexity to functions in order to admit them to the logic.

1 Introduction

Formal veri�cation of software requires the availability of a clear, formalizable

speci�cation. Hardware device simulators usually have such a speci�cation as

hardware developers typically understand what the device under development

is supposed to do. We have been building simulators for microprocessor mi-

croarchitectures in the ACL2 logic to support both standard simulator use and

formal, machine-assisted design analysis [2, 7].

An important consideration when writing software is execution eÆciency. Our

experience writing hardware simulators with straightforward use of the applica-

tive ACL2 logic is that there are ineÆciencies associated with maintaining mul-

tiple copies of the program state. In a benchmark of a toy microarchitecture

model reported in [7], an applicative Common Lisp program executed more

than 100x slower than an equivalent C-language simulator implementation. The

performance di�erence stems from the overhead associated with \objects" in-

troduced by the Lisp compiler to accommodate Common Lisp arbitrary-sized

1

Rockwell Collins

integer arithmetic and the the need to maintain multiple copies of program

state. This overhead is unacceptable in software where performance is an issue.

We want to verify software formally, so we would prefer to use an applicative

language such as that supported by the ACL2 theorem prover. However, we

generally cannot tolerate low performance. One important execution optimiza-

tion for applicative programs is to code in a style in which only a single copy

of the program state exists at any instant and use this property to optimize

program execution speed by replacing the data structure operations with fast,

destructive operations. Software that accesses data structures sequentially in

this way is called single-threaded. We have developed several methods for ex-

ploiting single-threadedness in applicative code, such as using Lisp macros to

enforce a single-threaded programming style and building a tool that detects

violations of this style [3].

Fortunately, such homegrown approaches are no longer necessary. At least two

theorem provers have added a capability for eÆcient execution that exploits

single-threadedness reliably. PVS automatically detects occasions when this

optimization can be made and provides an execution environment that exploits

it [6]. The ACL2 system has also recently been extended to support single-

threaded objects, or stobjs. ACL2 enforces restrictions on the use of stobjs to

ensure that stobjs are not copied, and provides a destructive implementation of

stobjs that allows operations on them to execute quickly [1]. Although stobjs

are relatively new to ACL2, they are basically a user-accessible version of what

has always existed in ACL2 in its handling of STATE [4]. They combine a

functional semantics about which we can reason with a high-speed imperative

implementation.

This paper describes the application of stobjs to speed a small, previously-

veri�ed ACL2 algorithm that �nds a path in a directed graph [5]. This small

example illustrates how ACL2 can be used to develop veri�ed programs that

execute eÆciently.

2 Moore's Path�nder Proof

J Moore presents a proof of a linear-time path�nding algorithm in [5], and the

corresponding ACL2 input is in the standard ACL2 distribution. It is a good ex-

ample of the development of a veri�ed algorithm using ACL2. The path-�nding

algorithm, called linear-find-path, searches a graph to �nd a path between

two vertices. The algorithm maintains a data structure that represents the ver-

tices that have already been visited (the marked vertices) and does not explore

candidate paths with marked vertices. The algorithm's theoretical worst-case

complexity is linear in the number of edges in the graph being searched, since

the number of basic operations required to run the algorithm | operations

2

Rockwell Collins

 Time
(CPU sec.)

60

70

10

50

40

20

30

Graph size
(x100,000 edges)

21 3 4 5 7 8 9 106

Figure 1: Execution Time of linear-find-path

such as marking a vertex, �nding the edges emanating from a vertex, or check-

ing whether a vertex is marked | increases in the worst case linearly as one

increases the number of edges in the graph. The linear-find-path algorithm

is proved to return a path if one exists.

ACL2 can not only verify algorithms but also be used to verify implementations.

The formalization in ACL2 of linear-find-path in [5] is also an implementa-

tion since it is expressed in the executable ACL2 logic. Figure 1 presents the

time required for linear-find-path to execute a benchmark. For the purposes

of this benchmark, we construct a graph with vertices 0 to N +1 where there is

no edge to vertex N + 1 and each of the vertices 0 to N has an edge to each of

the vertices 0 to N . Searching for a path from vertex 0 to vertex N + 1 causes

the algorithm to search (unsuccessfully) the entire graph of N2 edges.

The benchmark results appearing in Figure 1 indicate that the implementation

of linear-find-path has time complexity that is somewhat more than linear.

Indeed, linear-find-path is ineÆcient because the implementations of the un-

derlying data structure operations upon which it depends are ineÆcient. The

program uses lists to represent the graph and other needed data structures, and

the speed of the data structure operations is slower on larger graphs. If one

considers the basic computational operations to be primitives such as compar-

ing two values or setting a pointer, then the number of operations required to

execute linear-find-path increases in the worst case faster than linearly.

3

Rockwell Collins

3 A stobj-based implementation

We implement a version of the path�nding program that uses data structure

operations provided by ACL2's stobj mechanism so as to improve the speed of

the linear-find-path algorithm. The nonlinear time complexity is the result

of the underlying data structure operations, and by changing the underlying

data structure we can provide a linear-time implementation. We de�ne a single-

threaded object st that contains the data we need.

(defstobj st

(g :type (array list (100000)) :initially nil)

(marks :type (array (integer 0 1) (100000)) :initially 0)

(stack :type (satisfies true-listp))

(status :type (integer 0 1) :initially 0))

Graph vertices are numbered with a natural less than 100,000. Element g of

stobj st is used to represent the graph by recording in the array element corre-

sponding to a vertex's number a list of its children | those vertices to which it

has an edge. Element marks is an array of bits that indicate which vertices have

been already visited. Element stack contains a stack containing the current

path being explored. A �nal element, status, contains a ag that indicates

with a 1 when the algorithm has failed to �nd a path. Each of these data

structure elements corresponds to a data structure in the implementation of

linear-find-path in [5].

We implement a measure function for the path-�nding algorithm. Each step of

the algorithm reduces the children of the vertex currently being explored while

maintaining the number of marked vertices, or reduces the number of vertices

not yet marked. Again, this corresponds to what was done in [5], except now it

is de�ned in terms of the stobj-based data structure.

(defun measure-st (c st)

(declare (xargs :stobjs st

:guard (stp st)))

(cons (1+ (number-unmarked st)) (len c)))

We formalize the notion of a \good" graph using the function graphp-st which

checks that each vertex's list of children contains only valid vertex numbers. The

function bounded-natp returns whether the its �rst argument is a natural less

than its second argument, and numberlistp returns whether its �rst argument

is a true-list containing naturals less than its second argument.

The stobj-based version of the �nd-path algorithm appears in Figure 2. It works

much as the original in [5], except for its use of the stobj-based operations. Note

that the ACL2 syntactic restrictions on the use of stobjs in de�nitions guarantee

that st is accessed in a single-threaded way as described in [1].

4

Rockwell Collins

(defun linear-find-next-step-st (c b st)

(declare (xargs :stobjs st

:measure (measure-st c st)

:guard (and (graphp-st st)

(bounded-natp b (maxnode))

(numberlistp c (maxnode)))

:verify-guards nil))

(if (endp c) st

(let ((cur (coerce-node (car c)))

(temp (number-unmarked st)))

(cond

((equal (marksi cur st) 1)

(linear-find-next-step-st (cdr c) b st))

((equal cur b)

(let ((st (update-status 0 st)))

(update-stack (myrev (cons (car c) (stack st))) st)))

(t (let ((st (update-marksi cur 1 st)))

(let ((st (update-stack (cons (car c) (stack st)) st)))

(let ((st (linear-find-next-step-st (gi cur st) b st)))

(if (or (<= temp (number-unmarked st)) ; always nil

(equal (status st) 0))

st

(let ((st (update-stack (cdr (stack st)) st)))

(linear-find-next-step-st (cdr c) b st))))))))))))

(defun linear-find-st (a b st)

(declare (xargs :stobjs st

:guard (and (stp st)

(bounded-natp a (maxnode))

(bounded-natp b (maxnode))

(graphp-st st))))

(let ((st (linear-find-next-step-st (list a) b st)))

(if (not (equal (status st) 0))

(mv 'failure st)

(mv (stack st) st))))

Figure 2: Stobj-based path�nder

5

Rockwell Collins

4 Comments on the Proof

The stobj-based implementation and the proof of its equivalence with the ver-

i�ed algorithm of [5] accompany this paper. The proof requires the standard

sort of lemmas needed in ACL2 proofs to guide the theorem prover. The fact

that it is about a program that runs fast is irrelevant, which is the motivation

behind the introduction of stobj in ACL2.

An interesting aspect of the proof is the complexity of the induction scheme

required to show the equivalence of the path�nder implementations. As can be

seen in Figure 2, the function linear-find-next-step-st calls itself recursively

and uses the result as an argument in another recursive call. The induction

scheme has a similar structure. In the case of this proof, the ACL2 induction-

generation heuristics fail to generate a good scheme, so we provide one explicitly.

(See induct-equiv in the accompanying ACL2 input.) The induction scheme

provides an induction hypothesis that reects a single step of the algorithm for

both implementations of the algorithm, and also calculates a result that can be

used in the second recursive call in a manner consistent with the operation of

the algorithm. This is a rare instance where the value calculated in a de�nition

used to provide an induction scheme matters!

The �nal lemma that shows the equivalence of the stobj implementation and

the original veri�ed algorithm is

(implies

(and

(bounded-natp a (maxnode))

(bounded-natp b (maxnode))

(mygraphp g)

(stp st))

(equal

(car (linear-find-st a b (load-st g st)))

(linear-find-path a b g)))

We demonstrate the application of the correctness lemma on an example. Con-

sider the graph

0

1

2

3

6

Rockwell Collins

We �nd a path from vertex 0 to vertex 3 using both implementations. As

guaranteed by the lemma above, the paths are the same.

ACL2 !>(assign g '((0 1 2) (1) (2 0 1 2 3) (3 1)))

((0 1 2) (1) (2 0 1 2 3) (3 1))

ACL2 !>(mygraphp (@ g))

T

ACL2 !>(stp st)

T

ACL2 !>(linear-find-st 0 3 (@ g) st)

((0 2 3) <st>)

ACL2 !>(linear-find-path 0 3 (@ g))

(0 2 3)

5 An Unsupported Performance Optimization

But there's a y in the ointment. Function linear-find-next-step-st in

Figure 2 contains a computationally expensive test that does not a�ect the result

calculated by the function. The term (<= temp (number-unmarked st)) in the

body of the function supports a proof that the previously-discussed measure

function measure-st is reduced on each recursive call of the function. This

proof allows us to admit the function in the ACL2 logic. The test is irrelevant

(except for justifying the function's admissibility) because it is always non-nil,

since the recursive call of the function never increases the number of marked

vertices. Obviously, since we are concerned with execution speed, it is desirable

to eliminate this check. Unfortunately, the check is needed to prove termination

of the function and is therefore necessary in order to admit the function into

ACL2.

We prove that this check is irrelevant with the lemma in Figure 3. This lemma

states that when the guards to linear-find-next-step-st are satis�ed, then

the function's body can be replaced by a version that does not contain the

irrelevant check. Unfortunately, despite the proof of the lemma in Figure 3,

there is no ACL2-supported way to use the version of the algorithm without

the irrelevant check to justify termination of the function and thereby admit

it to the ACL2 logic. It is possible in this case to replace the check with a

more-eÆcient one, but it is not possible to eliminate the check altogether.1

We take matters into our own hands and use the ACL2 \skip-proofs" command

1The number of recursive calls is bounded by total number of edges in the graph, so one

more-eÆcient check would be to test that a counter that is decremented on each recursive

call is nonnegative. If the counter is initialized with the value of the total number of edges,

then this test would always return t. Of course, while this check would allow admissability

and would be more eÆcient, it would be similarly irrelevant to the value produced by the

algorithm.

7

Rockwell Collins

(defthm linear-find-next-step-st-simpler

(implies

(and

(graphp-st st)

(bounded-natp b (maxnode))

(numberlistp c (maxnode)))

(equal

(linear-find-next-step-st c b st)

(if (endp c) st

(cond

((equal (marksi (car c) st) 1)

(linear-find-next-step-st (cdr c) b st))

((equal (car c) b)

(let ((st (update-status 0 st)))

(update-stack (myrev (cons b (stack st))) st)))

(t (let ((st (update-marksi (car c) 1 st)))

(let ((st (update-stack (cons (car c) (stack st)) st)))

(let ((st (linear-find-next-step-st (gi (car c) st) b st)))

(if (equal (status st) 0)

st

(let ((st (update-stack (cdr (stack st)) st)))

(linear-find-next-step-st (cdr c) b st)))))))))))

:rule-classes :definition)

Figure 3: Lemma justifying elimination of irrelevant check

8

Rockwell Collins

Graph size
(x100,000 edges)

21 3 4 5 7 8 9 106

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(CPU sec.)
 Time

Figure 4: Execution Time of linear-find-st

to de�ne linear-find-st, a version of the stobj-based path�nder that omits the

irrelevant check. Lemma linear-find-next-step-st-simpler implies that

this version of the algorithm is consistent with the version we have veri�ed, but

it is unsettling not to be able to use ACL2 to check our work here. The ACL2

developers are considering adding a \defbody" command to ACL2 that could

be used to de�ne linear-find-st, requiring the user to justify it by proving a

lemma similar to linear-find-next-step-st-simpler. This example suggests

that this enhancement would be bene�cial.

6 Benchmark Results

Figure 4 presents the result of benchmarking the stobj-based implementation

(omitting the check we have proved irrelevant) in the same way as the origi-

nal implementation's benchmark presented in Figure 1. The new implementa-

tion executes faster | 0.28 seconds versus 78 seconds for the benchmark with

1,000,000 edges. It executes in linear-time, and is guaranteed correct by virtue

of the equivalence lemma presented in this paper and the correctness lemma

proved in [5].

9

Rockwell Collins

7 Conclusions

Our conclusion from writing hardware simulators is that ACL2 enhanced with

stobjs can express complex software that executes eÆciently. The experience

documented in this paper suggests that software other than hardware simulators

can bene�t from this technique, providing algorithm implementations that are

provably correct and that execute at their theoretical maximum eÆciency. This

exercise also highlights a weakness in ACL2, which is the occasional need to

write unnecessarily complex functions.

References

[1] Robert S. Boyer and J Strother Moore. Single-threaded objects in ACL2,

1999. http://www.cs.utexas.edu/users/moore.

[2] David Greve, Matthew Wilding, and David Hardin. High-speed, analyz-

able simulators. In Computer-Aided Reasoning: ACL2 Case Studies. Kluwer

Academic Publishers, 2000. http://www.pobox.com/users/hokie/docs/-

hsas.ps.

[3] David Hardin, David Greve, Matthew Wilding, and John Cowles. Single-

threaded formal processor models: Enabling proof and high-speed execu-

tion. Technical report, Rockwell Collins Advanced Technology Center, Cedar

Rapids, IA, 1999. http://www.pobox.com/users/hokie/docs/tr99.ps.

[4] M. Kaufmann and J S. Moore. An industrial strength theorem prover for a

logic based on Common Lisp. IEEE Transactions on Software Engineering,

23(4):203 { 213, April 1997.

[5] J Strother Moore. An exercise in graph theory. In Computer-Aided Reason-

ing: ACL2 Case Studies. Kluwer Academic Publishers, 2000.

[6] Natarajan Shankar. EÆciently executing PVS. Technical report, Computer

Science Laboratory, SRI International, Menlo Park, CA, 1999.

[7] Matthew Wilding, David Greve, and David Hardin. EÆcient simulation

of formal processor models. Formal Methods in System Design, to appear.

Draft TR available as http://pobox.com/users/hokie/docs/efm.ps.

10

