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Introduction

The CAPS (Collins Adaptive Processing System) is a family of Rockwell Collins
proprietary processors.  In a multiyear IR&D effort, Rockwell Collins adapted
and developed techniques that allow for formal code verification of the microcode
running on members of this family.  The motivation for this research was that
CAPS microprocessors are used in some of the most safety-critical products that
Rockwell Collins sells, and current microprocessor verification and certification
techniques are extremely laborious.  On this project formal verification techniques
were demonstrated on examples of actual microcode. Some of this work is
publically documented [Greve00a, Wilding01a].  The code verification techniques
we developed for critical microcode can be generalized to other kinds of code.

In this summary paper we provide an overview of what we consider to be three of
the important aspects of this work: our approach to model development, our
approach to code proof decomposition, and several code proof automation
techniques that we adapted and/or developed.

Formal Model Development Tools

Rockwell Collins has developed tools and techniques for writing and reasoning
about formal models.  The models are consistent with the logic supported by the
ACL2 theorem prover, and can be reasoned about using that tool.  Models
developed using this approach execute about as fast as simulators written in
conventional, imperative languages like C.  Because these formal models are
written in a standard programming language, they can be integrated with other
software, such as the simulator used for microcode development that is shown in
Figure 1.

The tools used in building machine models provide the automatic generation of
update and access theorems for each element of the state.  In the CAPS project,
the underlying model contained 337 state elements.  For this model the tools
automatically generated thousands of theorems, which were subsequently
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processed by the ACL2 theorem prover to ensure their correctness.  These
theorems were then used in proofs about microcode running on the model.
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decomposition is reflected in the combining of single microcode line specs
into microcode block specs.

3. Loop simplification  Proofs involving loops can be further broken into
proofs about the correct implementation of the loop (using some kind of
recursive function) and a simple specification where the state elements
that are manipulated by the loop are specified individually in the body of
an otherwise non-recursive specification.  This decomposition is reflected
in the use of abstract microcode block specs.

An important innovation used in the CAPS code proofs is the use of the
underlying machine to describe irrelevant parts of the model.  For example, for a
particular line of microcode all but a handful of the hundreds of state elements of
the microarchitecture model are irrelevant.  We specify their behavior in the
“single microcode line specs” by using the underlying microarchitecture model.
This makes writing the models easy – only a few relevant parts of the state are
explicitly modeled – and allows equality reasoning throughout the proofs.  This
technique is described (in a PVS theorem prover context) in [Wilding97].

Modeling and Proof Automation

Modeling and proving programs correct requires ingenuity since intellectual effort
is required to understand what a program does.  However, many of the tasks
associated with the process of modeling and proving code correct can be
automated.  In fact, automation of the model and proof process is crucial for
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making code proofs practical.  Although our proof decomposition approach
transforms the code proof challenge into smaller challenges, those smaller
challenges are still formidable.  Rockwell Collins’ CAPS microcode verification
program included three basic types of automation.

• Automated tools for generating proofs These tools generate input for a
theorem prover and significantly simplify the task of guiding them to
correctness proofs.  For CAPS this kind of tool included

o Several proof-generating macros that automate much of the proof
decomposition process described in the previous section.

o A “reader” that provides convenient expression of machine
models and which generates type rules for manipulating state.

• Reasoning libraries  Once the proofs are decomposed into smaller pieces
there often remain proof obligations involving fundamental machine
arithmetic properties. One of the most important instances of code proof
automation in the CAPS work is the Super-IHS library, which contains
many rules that provide a standard strategy for simplifying expressions
that result from symbolic code execution.  Super-IHS extends the IHS
book that is part of the standard ACL2 distribution.

• Theorem prover enhancements In our experience, every application of a
theorem prover to an industrial problem results in tool improvements.  In
the CAPS work several improvements were made to ACL2, most
significantly the introduction of stobjs and development of the nu-rewriter,
which provides efficient automated simplification of expressions
involving state accesses and updates.1

Automation of the modeling and proof process in these respects was crucial for
demonstrating formal correctness of some of the CAPS microcode.  Nearly all of
the techniques we developed apply to other kinds of code proofs besides
microcode proofs, such as machine code proofs.  Furthermore, most also apply to
other theorem proving systems besides ACL2.  What has emerged from the CAPS
project and other previous projects are ad hoc approaches for tackling the
fundamental challenge of complexity in code proofs using proof decomposition
and automation.

                                                     
1 The nu-rewriter was developed under contract to Rockwell Collins by J Moore of the University
of Texas at Austin.  The problem Rockwell Collins faced was that the simplification of state
access and update terms requires something like outside-in rewriting, and yet most problems
benefit from the inside-out simplification approach implemented in ACL2.  Dr. Moore’s ultimate
solution involves a careful integration of a limited form of outside-in rewriting with the standard
ACL2 simplification strategies and overcomes this crucial problem in code proof development.
The nu-rewriter was recently released (in ACL2 version 2.6) and is documented in [Moore01].



Evaluatable, High-Assurance Microprocessors Page 5

An example ACL2 code proof

A small code proof that illustrates some aspects of the CAPS work is available.
The problem is from [Legato00], and the proof can be checked using ACL2 2.6.

The example is in some respects simpler than the kinds of microcode proofs done
under the CAPS program.

• The formalization of the underlying machine model is much less complex
in this example compared with the CAPS microarchitecture model. There
is no interpreter in this example;  the functional description of each line of
the code is introduced at a level of abstraction similar to the “single
microcode line” of Figure 2.

• The block structure of the code is constructed by hand and added as a
function, also simplifying the proof burden compared with CAPS proofs.

• The ISA-level of this example is simpler than the microarchitecture level
at which the CAPS model is written.

Despite these differences, several aspects of the CAPS work can be observed in
this example.

• Although the Super-IHS book is not loaded, the underlying philosophy of
that book, which is similar to that of the publically-available IHS book, is
evident.  Note in particular that, although the machine operations are
defined in terms of arithmetic operations on integers, some of the proofs
use induction schemes that would normally be associated with operations
defined on bit-vectors.

• Although the Rockwell Collins “reader” used for model building is not
used in this example, rewrite rules that were generated by the reader on
another problem were adapted for use here.  Note that we would normally
generate these rules automatically.

• This example relies on the nu-rewriter for efficient and automatic
simplification of expressions involving state access and update.

Summary

At Rockwell Collins we are learning how to apply theorem provers to safety- and
security- critical applications requiring high assurance.  The use of automation
and proof decomposition is critical to successful use of these tools.
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