

vFaat: von Neumann Formal Analysis and Annotation Tool

David Greve and Matthew Wilding
Rockwell Collins Advanced Technology Center

February 12, 2003

Abstract

Formal verification can be used to establish important properties of critical

systems. However, applying formal methods to a low-level implementation of a
complex system is a daunting challenge, in part because extracting abstract
functionality from a specific implementation is tedious. Automating such efforts
by placing them under computer control helps free the user to focus on the
essence of the verification problem.

vFaat is a tool suite to assist in the formal verification of imperative code

executing on von Neumann computing architectures. Building on our experience
developing proofs about high-assurance microcoded processors, this work
codifies several ad hoc techniques to simplify the process of reasoning about
software-based systems.

1. The Promise and Challenge of Code Proofs
1.1 Formal Methods and the Code Verification Challenge
Formal methods allow precise descriptions of systems and requirements and
enable them to be related in a mathematically meaningful way. Formal
verification can demonstrate that, under all conditions of interest, a particular
design behaves as specified. A formal proof of correctness can account for every
condition that the design might experience regardless of the size of the design’s
state space. Formal methods therefore provide both the high assurance and the
vital scaling property that are necessary for verifying complex designs.

A crucial consideration in formal methods work is the level of abstraction that is
appropriate for models. The use of high-level, abstract models as the basis for
formal methods verification allows for simpler reasoning when the properties of
interest can be conveniently addressed at the algorithmic level. An excellent
example of reasoning about such an abstract system is the work at Rockwell
Collins analyzing mode awareness in flight guidance systems that formally
demonstrates that the design of modern flight automation software does not lead
to dangerous ambiguities [Butler98, Miller01].

There are, however, several reasons for adopting a more detailed model of
computation in some applications of formal methods.

To guarantee the model’s fidelity In order for the evaluation of the
system to take advantage of the formal methods, it must be certain that the
formal model used to support the proofs actually reflects the behavior of
the system being scrutinized. When the model is a low-level model based
on the actual code it is easier to demonstrate this connection [Greve00c].

To reason about low-level primitives Assembly code and compiler
directives are commonly used in low-level software implementations.
Such constructs are most common in code of high criticality; code such as
operating system kernels and math libraries. Unfortunately, the semantics
of these primitives are often difficult to express at the source code level,
making formal analysis nearly impossible.

To avoid reasoning about compilers and other software tools By
reasoning directly about low-level machine code or microcode, one
bypasses tools such as compilers and linkers that could impact the
correctness of an application.[Greve00b].

The disadvantage of reasoning about code directly, rather than at a more abstract
level, is complexity. Code proofs involve many implementation details that
would be ignored when reasoning about a more abstract model. Some work has

been done on techniques for solving this problem. One notable project is the CLI
short stack [Bevier89, Wilding93]. A family of implementations – an assembler,
a compiler, a hardware design, and two applications – are shown to work together
and are proved correct using a theorem prover. Yuan Yu demonstrated proofs of
68020 code, many of which were compiled into machine code from higher-level
languges. [Yu92]. Rockwell Collins has used the PVS theorem proving system to
reason about code in several projects [Wilding97, Greve98, Miller99].

This paper describes how we will develop tools to incorporate previously
developed techniques into an automated tool supporting a code proof process.

1.2 The CAPS Project: A Critical Microcode Verification Approach
The CAPS (Collins Adaptive Processing System) is a family of Rockwell Collins
proprietary processors. In a multiyear IR&D effort, Rockwell Collins adapted
and developed techniques that allow for formal code verification of the microcode
running on members of this family. The motivation for this research was that
CAPS microprocessors are used in some of the most safety-critical products that
Rockwell Collins sells, and current microprocessor verification and certification
techniques are extremely laborious. On this project formal verification techniques
were applied to several sequences of actual microcode [Greve02, Greve00a,
Wilding01a]. Three important aspects of this work were model development
tools, proof decomposition techniques, and modeling and proof automation.

• Formal Model Development Tools Rockwell Collins has developed
tools and techniques for writing and reasoning about low level
implementations. These methods enable the construction of formalized
implementations of sufficient detail to execute device production tests.
Such low level models provide high confidence in the fidelity of the model

• Code Proof Decomposition A crucial challenge in code correctness
proofs is developing a methodology for breaking the proof down into
smaller, more manageable pieces. The three primary proof
decomposition techniques exploited in the CAPS program were the
separation of algorithm from implementation, the exploitation of code
block structure to break code execution into discrete steps, and loop and
block simplification.

• Modeling and Proof Automation Modeling and proving programs
correct requires ingenuity since intellectual effort is required to
understand what a program does. However, many of the tasks
associated with the process of modeling and proving code correct can be
automated. In fact, automation of the model and proof process is crucial
for making code proofs practical. Three forms of automation employed in

the Rockwell Collins’ CAPS program were the mechanical generation of
proofs, sophisticated reasoning libraries, and fundamental theorem prover
enhancements.

Automation of the modeling and proof process in these respects was crucial to
being able to demonstrate formal microcode verification in the CAPS project.
Nearly all of the techniques described here apply to proofs other than microcode
proofs, such as machine code proofs. Furthermore most also apply to other
theorem proving systems besides ACL2. What has emerged from the CAPS
project and other previous projects are ad hoc approaches for tackling the
fundamental challenge of complexity in code proofs using proof decomposition
and automation.

2. vFaat: A Modeling and Code Verification Tool

The vFaat (von Neumann1 Formal Annotation and Automation Tool)
methodology supports the kind of proof management and automation seen in the
CAPS work in a way that is theorem prover and domain language independent.

2.1 The Tool Suite
The vFaat tool assists in the formal analysis of code, such as machine code or
microcode. The tool mechanizes and manages standard practices employed in the
code proof process. The core of the tool suite is processor independent, making it
useful for reasoning about object code for a wide variety of microprocessors. It is
also theorem prover independent and can be targeted towards a variety of theorem
proving environments.

The tool flow has four basic parts – input, annotation, automation, and output.
Input is the process of extracting useful information from executable object files.
Annotation is the process of linking both user-provided and machine generated
information to the internal data structures. Automation is a set of
implementation independent analyses that the tool set provides to the end user.
Output is the process of converting the internal data structures and annotation
into theorem prover proof scripts. Each of these stages is described in more detail
in the following sections.

2.1.1 Input

Input is the process of parsing an object file, extracting useful information from it,
and storing the resulting information in a format usable by the other tools in the
tool chain. This front-end software is object file and instruction set specific, but
the information resulting from this process is independent of the object file and

1 A von Neumann machine exhibits a read-execute-write style of execution, a property of both
machine code and microcode execution.

instruction set. The input-processing step isolates the tool chain from the
specifics of the object code format and instruction set, ultimately maximizing the
applicability of the overall system.

2.1.2 Annotation

Annotation enables the user to insert pre-conditions, post-conditions, function
definitions, and proof scripts at specific points in the control flow graph.
Annotation is the facility that bridges the gap between those tasks that can be
automated within the tool suite and those tasks that must be performed by other
means. It is also the mechanism through which vFaat’s functionality can be
extended by other, third-party tools.

Annotations can be generated either mechanically or by hand. Annotations are
persistent in the sense that they can be preserved from one tool run to the next.
Because annotations represent an investment of effort and because they are
persistent, annotations must be managed robustly in the face of minor changes to
the underlying code. The implementation attempts to associate annotations with
tags linked to labels and other debugging information in order to isolate them
from small changes in the target code.

The primary target of annotation is the hierarchical control flow graph. In the
hierarchical control flow graph larger blocks are defined by composing some
number of smaller blocks. This over-arching block structure is a natural vehicle
for managing proofs about such composed functions. As observed in the CAPS
work described previously, a proof obligation for a function reduces to a number
of simpler proof obligations on the functions of which it is composed. Thus, by
associating properties with specific blocks, we are able to manage the
decomposition of the overall proof process.

2.1.3 Automation

While the annotation facility supports the management of a proof effort, the
automation functionality mechanizes appropriate aspects of the verification task.
While not every task is amenable to mechanization, there are a wide variety of
tasks that can be performed with little or no user guidance. Of course, the more
automation that can be applied to the verification process, the more accessible the
process becomes to the typical user. Perhaps more importantly, the more
mundane, routine tasks that can be offloaded to a computer the more time the
verification engineer can spend focused on the heart of the verification problem.

An important feature of the tool architecture is that it allows functionality to be
added to the base configuration in a modular fashion, incrementally improving the
power and usability of the system without requiring major re-architecting of the

base design. We are evaluating the following automated procedures for
incorporation into the tool suite.

Control flow analysis: Control flow analysis allows one to derive
automatically block hierarchy from a flat control flow graph. Such
analysis assists in the proof decomposition process and has been
accomplished in various efforts, including the JEM1 symbolic simulation
work [Greve98], the CAPS work [Greve02], and in Destiny [Legato00].
Control flow analysis involves identifying basic blocks, finding and
encapsulating loops, removing delayed branches, incorporating exceptions
and interrupts, and encapsulating subroutines.

Weakest Precondition Propagation: The management of pre- and post-
conditions is supported by the annotation facility. However, without
automated support, the user is still responsible for generating and
propagating these conditions through the control flow graph. The
integration of vFaat with a weakest precondition propagation tool such as
Destiny [Legato00] would allow such conditions to be automatically
pushed through the control flow graph.

Parity Analysis: Stacks and queues are common data structures in many
computing systems. Good system behavior, however, requires that access
to such structures be guaranteed not to overrun the allocated memory area.
While such analysis can be tedious if performed by hand, the specific,
well-defined nature of the accesses performed on such structures allows
much of this analysis to be automated.

Functional Derivation: Previous work has explored the automatic
derivation of block functionality [Greve98]. Integrating this technology
with vFaat would allow the system to generate automatically a symbolic
representation of the value of each interesting state element in terms of the
initial state of the block.

2.1.4 Output

The final output of the tool suite is a proof script that can be loaded into a general-
purpose theorem prover. Unlike a compiler whose failure can introduce an error
in the resulting executable, every decision made by vFaat is ultimately checked by
a theorem prover. This is important because it allows the introduction of
sophisticated, third party analysis tools into the tool chain without requiring the
user to trust the soundness of such tools.

The vFaat system is a tool for managing and automating specific aspects of the
proof process for imperative code. vFaat is not a theorem prover and its
functionality is designed to be theorem prover independent. Targeting vFaat to a
new theorem prover is a matter of interpreting the common idioms used by the

tool into the language and structure of the targeted theorem prover. vFaat
automatically generates only function definitions and simple rewrite rules. The
function definitions take the form of block functional descriptions, clock
functions, and predicates over the state. The proof obligations take the form of
simple rewrite rules and include theorems to enable the connection of the
sequential block functions and theorems to demonstrate the invariance of certain
properties.

Any interesting proofs that take place in the system must be performed by the user
or by third party tools that interface with vFaat through the annotation facility.
Additionally, while proofs scripts are almost always necessary to guide the
theorem prover in the proof process, these scripts must be coded by the user to
target a specific theorem prover and managed by the system as necessary via
annotations.

3. Summary

Rockwell Collins has a continuing interest in the development and verification of
highly secure software-based communication systems. Rockwell Collins has
experience in the field of formal verification of computing systems and has
constructed prototype versions of various aspects of the vFaat system for
microcoded microprocessors targeting both the ACL2 and PVS theorem provers.
We believe that vFaat, being processor and theorem prover independent, will
target a wide variety of problem domains and help leverage previously developed
verification techniques.

Bibliography
 [Bevier89] W.R. Bevier, W.A. Hunt, Jr., J S. Moore, and W.D. Young. An approach to systems
verification. Journal of Automated Reasoning, 5:411--428, 1989

[Butler98] Ricky Butler, Steven Miller, James Potts, and Victor Carreno. A formal methods
approach to the analysis of mode confusion. In 17th AIAA/IEEE Digital Avionics Systems
Conference, Bellevue, WA, October 1998.

[Greve98] David Greve, Symbolic Simulation of the JEM1 Microprocessor, Proc. FMCAD’98,
Palo Alto, Nov. 1998, Springer Verlag LNCS N1522, pp.321-333

[Greve00a] David Greve, Matthew Wilding, and David Hardin, High-Speed, Analyzable
Simulators, invited chapter in Computer-Aided Reasoning: ACL2 Case Studies, Kluwer
Academic Publishers, 2000. (ISBN 0-7923-7849-0)

[Greve00b] David Greve, Matthew Wilding, Mark Bickford, and David Guaspari, Orpheus: A
Self-Checking Translation Tool Arrangement for Flight Critical Hardware Development, Langley
Formal Methods 2000 -- LFM00, Williamsburg, VA, 2000.

[Greve00c] David Greve and Matthew Wilding, Executable Formal Models for Validation and
Specless Verification, 19th Digital Avionics Systems Conference (DASC), Philadelphia, PA,
October 2000.

[Greve02] David Greve and Matthew Wilding, Evaluatable, High-Assurance Microprocessors,
Proceedings of High Confidence Software and Systems Conference (HCSS), Linthicum, MD,
March 2002.

 [Kaufmann00] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, Computer-Aided
Reasoning: An Approach, Kluwer Academic Publishers, 2000. (ISBN 0-7923-7744-3)

[Legato00] Wilfred J. Legato, A Weakest Precondition Model for Assembly Language Programs,
unpublished manuscript, June 19, 2000.

[Miller99] Steve Miller, David Greve, Matthew Wilding, and Mandayam Srivas, Formal
Verification of the AAMP-FV Microcode, NASA Report NASA/CR-1999-208992, Feb 1999.

[Miller01] Steven P. Miller and Alan C. Tribble, Extending the Four-Variable Model to Bridge the
System-Software Gap, Presented at the 20th IEEE / AIAA Digital Avionics Systems
Conference (DASC), Daytona Beach, FL, October 2001.

[Moore01] J Strother Moore, Rewriting for Symbolic Execution of State Machine Models, LNCS
2102, Computer Aided Verification, 13th International Conference, CAV 2001, Paris, France,
July 18-22, 2001, Proceeding

[Rushby01] John Rushby, Security requirements specifications: How and what?, Invited paper
presented at Symposium on Requirements Engineering for Information Security (SREIS),
Indianapolis, IN, March 2001.

[Shankar00] Natarajan Shankar, Efficiently Executing PVS, SRI Computer Science Lab report,
Nov. 1999.

[Wilding93] Matthew Wilding, A Mechanically Verified Application for a Mechanically Verified
Environment, Computer-Aided Verification -- CAV '93, Springer-Verlag Lecture Notes in
Computer Science volume 697, 1993.

[Wilding97] Matthew Wilding, Robust Computer System Proofs in PVS, In LFM97: Fourth
NASA Langley Formal Methods Workshop, C. Michael Holloway and Kelly J. Hayhurst, eds.
NASA Conference Publication no. 3356, 1997

[Wilding01a] Matthew Wilding, David Greve, and David Hardin, Efficient Simulation of Formal
Processor Models, Formal Methods in System Design, 18(3), Kluwer Academic Publishers,
May 2001.

[Yu92] Yuan Yu, Automated Proofs of Object Code for a Widely Used Microprocessor, Ph.D.
Thesis, The University of Texas at Austin, 1992

