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Abstract 
 
Formal verification can be used to establish important properties of critical 

systems.  However, applying formal methods to a low-level implementation of a 
complex system is a daunting challenge, in part because extracting abstract 
functionality from a specific implementation is tedious. Automating such efforts 
by placing them under computer control helps free the user to focus on the 
essence of the verification problem. 

 
vFaat is a tool suite to assist in the formal verification of imperative code 

executing on von Neumann computing architectures.  Building on our experience 
developing proofs about high-assurance microcoded processors, this work 
codifies several ad hoc techniques to simplify the process of reasoning about 
software-based systems. 



  

1. The Promise and Challenge of Code Proofs 
1.1 Formal Methods and the Code Verification Challenge 
Formal methods allow precise descriptions of systems and requirements and 
enable them to be related in a mathematically meaningful way. Formal 
verification can demonstrate that, under all conditions of interest, a particular 
design behaves as specified.  A formal proof of correctness can account for every 
condition that the design might experience regardless of the size of the design’s 
state space.  Formal methods therefore provide both the high assurance and the 
vital scaling property that are necessary for verifying complex designs. 
 
A crucial consideration in formal methods work is the level of abstraction that is 
appropriate for models.  The use of high-level, abstract models as the basis for 
formal methods verification allows for simpler reasoning when the properties of 
interest can be conveniently addressed at the algorithmic level.  An excellent 
example of reasoning about such an abstract system is the work at Rockwell 
Collins analyzing mode awareness in flight guidance systems that formally 
demonstrates that the design of modern flight automation software does not lead 
to dangerous ambiguities [Butler98, Miller01]. 
 
There are, however, several reasons for adopting a more detailed model of 
computation in some applications of formal methods. 
 

To guarantee the model’s fidelity  In order for the evaluation of the 
system to take advantage of the formal methods, it must be certain that the 
formal model used to support the proofs actually reflects the behavior of 
the system being scrutinized.  When the model is a low-level model based 
on the actual code it is easier to demonstrate this connection [Greve00c]. 
 
To reason about low-level primitives  Assembly code and compiler 
directives are commonly used in low-level software implementations.  
Such constructs are most common in code of high criticality; code such as 
operating system kernels and math libraries.  Unfortunately, the semantics 
of these primitives are often difficult to express at the source code level, 
making formal analysis nearly impossible. 

 
To avoid reasoning about compilers and other software tools  By 
reasoning directly about low-level machine code or microcode, one 
bypasses tools such as compilers and linkers that could impact the 
correctness of an application.[Greve00b]. 

 
The disadvantage of reasoning about code directly, rather than at a more abstract 
level, is complexity.  Code proofs involve many implementation details that 
would be ignored when reasoning about a more abstract model.  Some work has 



  

been done on techniques for solving this problem.  One notable project is the CLI 
short stack [Bevier89, Wilding93].  A family of implementations – an assembler, 
a compiler, a hardware design, and two applications – are shown to work together 
and are proved correct using a theorem prover.  Yuan Yu demonstrated proofs of 
68020 code, many of which were compiled into machine code from higher-level 
languges. [Yu92].  Rockwell Collins has used the PVS theorem proving system to 
reason about code in several projects [Wilding97, Greve98, Miller99].   
 
This paper describes how we will develop tools to incorporate previously 
developed techniques into an automated tool supporting a code proof process. 
 

1.2 The CAPS Project: A Critical Microcode Verification Approach 
The CAPS (Collins Adaptive Processing System) is a family of Rockwell Collins 
proprietary processors.  In a multiyear IR&D effort, Rockwell Collins adapted 
and developed techniques that allow for formal code verification of the microcode 
running on members of this family.  The motivation for this research was that 
CAPS microprocessors are used in some of the most safety-critical products that 
Rockwell Collins sells, and current microprocessor verification and certification 
techniques are extremely laborious.  On this project formal verification techniques 
were applied to several sequences of actual microcode [Greve02, Greve00a, 
Wilding01a].  Three important aspects of this work were model development 
tools, proof decomposition techniques, and modeling and proof automation. 
 
 

• Formal Model Development Tools  Rockwell Collins has developed 
tools and techniques for writing and reasoning about low level 
implementations. These methods enable the construction of formalized 
implementations of sufficient detail to execute device production tests.  
Such low level models provide high confidence in the fidelity of the model 

 

• Code Proof Decomposition  A crucial challenge in code correctness 
proofs is developing a methodology for breaking the proof down into 
smaller, more manageable pieces.  The three primary proof 
decomposition techniques exploited in the CAPS program were the 
separation of algorithm from implementation, the exploitation of code 
block structure to break code execution into discrete steps, and loop and 
block simplification. 

 

• Modeling and Proof Automation  Modeling and proving programs 
correct requires ingenuity since intellectual effort is required to 
understand what a program does.  However, many of the tasks 
associated with the process of modeling and proving code correct can be 
automated.  In fact, automation of the model and proof process is crucial 
for making code proofs practical.  Three forms of automation employed in 



  

the Rockwell Collins’ CAPS program were the mechanical generation of 
proofs, sophisticated reasoning libraries, and fundamental theorem prover 
enhancements. 

 
Automation of the modeling and proof process in these respects was crucial to 
being able to demonstrate formal microcode verification in the CAPS project.  
Nearly all of the techniques described here apply to proofs other than microcode 
proofs, such as machine code proofs.  Furthermore most also apply to other 
theorem proving systems besides ACL2.  What has emerged from the CAPS 
project and other previous projects are ad hoc approaches for tackling the 
fundamental challenge of complexity in code proofs using proof decomposition 
and automation.  
 

2. vFaat: A Modeling and Code Verification Tool  
 

The vFaat (von Neumann1 Formal Annotation and Automation Tool) 
methodology supports the kind of proof management and automation seen in the 
CAPS work in a way that is theorem prover and domain language independent. 

2.1 The Tool Suite 
The vFaat tool assists in the formal analysis of code, such as machine code or 
microcode.  The tool mechanizes and manages standard practices employed in the 
code proof process.  The core of the tool suite is processor independent, making it 
useful for reasoning about object code for a wide variety of microprocessors.  It is 
also theorem prover independent and can be targeted towards a variety of theorem 
proving environments. 
 
The tool flow has four basic parts – input, annotation, automation, and output.  
Input is the process of extracting useful information from executable object files. 
Annotation is the process of linking both user-provided and machine generated 
information to the internal data structures.  Automation is a set of 
implementation independent analyses that the tool set provides to the end user.  
Output is the process of converting the internal data structures and annotation 
into theorem prover proof scripts.  Each of these stages is described in more detail 
in the following sections. 
 
2.1.1 Input 

Input is the process of parsing an object file, extracting useful information from it, 
and storing the resulting information in a format usable by the other tools in the 
tool chain.  This front-end software is object file and instruction set specific, but 
the information resulting from this process is independent of the object file and 
                                                      
1 A von Neumann machine exhibits a read-execute-write style of execution, a property of both 
machine code and microcode execution.   



  

instruction set.  The input-processing step isolates the tool chain from the 
specifics of the object code format and instruction set, ultimately maximizing the 
applicability of the overall system.  
 
2.1.2 Annotation 
 
Annotation enables the user to insert pre-conditions, post-conditions, function 
definitions, and proof scripts at specific points in the control flow graph.  
Annotation is the facility that bridges the gap between those tasks that can be 
automated within the tool suite and those tasks that must be performed by other 
means.  It is also the mechanism through which vFaat’s functionality can be 
extended by other, third-party tools. 
 
Annotations can be generated either mechanically or by hand.  Annotations are 
persistent in the sense that they can be preserved from one tool run to the next.  
Because annotations represent an investment of effort and because they are 
persistent, annotations must be managed robustly in the face of minor changes to 
the underlying code.  The implementation attempts to associate annotations with 
tags linked to labels and other debugging information in order to isolate them 
from small changes in the target code. 
 
The primary target of annotation is the hierarchical control flow graph.  In the 
hierarchical control flow graph larger blocks are defined by composing some 
number of smaller blocks.  This over-arching block structure is a natural vehicle 
for managing proofs about such composed functions.  As observed in the CAPS 
work described previously, a proof obligation for a function reduces to a number 
of simpler proof obligations on the functions of which it is composed.  Thus, by 
associating properties with specific blocks, we are able to manage the 
decomposition of the overall proof process. 

2.1.3 Automation 

While the annotation facility supports the management of a proof effort, the 
automation functionality mechanizes appropriate aspects of the verification task.  
While not every task is amenable to mechanization, there are a wide variety of 
tasks that can be performed with little or no user guidance.  Of course, the more 
automation that can be applied to the verification process, the more accessible the 
process becomes to the typical user.  Perhaps more importantly, the more 
mundane, routine tasks that can be offloaded to a computer the more time the 
verification engineer can spend focused on the heart of the verification problem. 
 
An important feature of the tool architecture is that it allows functionality to be 
added to the base configuration in a modular fashion, incrementally improving the 
power and usability of the system without requiring major re-architecting of the 



  

base design.  We are evaluating the following automated procedures for 
incorporation into the tool suite. 
 

Control flow analysis: Control flow analysis allows one to derive 
automatically block hierarchy from a flat control flow graph.  Such 
analysis assists in the proof decomposition process and has been 
accomplished in various efforts, including the JEM1 symbolic simulation 
work [Greve98], the CAPS work [Greve02], and in Destiny [Legato00].  
Control flow analysis involves identifying basic blocks, finding and 
encapsulating loops, removing delayed branches, incorporating exceptions 
and interrupts, and encapsulating subroutines. 
  
Weakest Precondition Propagation: The management of pre- and post-
conditions is supported by the annotation facility.  However, without 
automated support, the user is still responsible for generating and 
propagating these conditions through the control flow graph.  The 
integration of vFaat with a weakest precondition propagation tool such as 
Destiny [Legato00] would allow such conditions to be automatically 
pushed through the control flow graph. 
 
Parity Analysis: Stacks and queues are common data structures in many 
computing systems. Good system behavior, however, requires that access 
to such structures be guaranteed not to overrun the allocated memory area. 
While such analysis can be tedious if performed by hand, the specific, 
well-defined nature of the accesses performed on such structures allows 
much of this analysis to be automated.  
 
Functional Derivation: Previous work has explored the automatic 
derivation of block functionality [Greve98].  Integrating this technology 
with vFaat would allow the system to generate automatically a symbolic 
representation of the value of each interesting state element in terms of the 
initial state of the block. 
 

2.1.4 Output 

The final output of the tool suite is a proof script that can be loaded into a general-
purpose theorem prover.  Unlike a compiler whose failure can introduce an error 
in the resulting executable, every decision made by vFaat is ultimately checked by 
a theorem prover.  This is important because it allows the introduction of 
sophisticated, third party analysis tools into the tool chain without requiring the 
user to trust the soundness of such tools. 
 
The vFaat system is a tool for managing and automating specific aspects of the 
proof process for imperative code.  vFaat is not a theorem prover and its 
functionality is designed to be theorem prover independent.  Targeting vFaat to a 
new theorem prover is a matter of interpreting the common idioms used by the 



  

tool into the language and structure of the targeted theorem prover.  vFaat 
automatically generates only function definitions and simple rewrite rules.  The 
function definitions take the form of block functional descriptions, clock 
functions, and predicates over the state.  The proof obligations take the form of 
simple rewrite rules and include theorems to enable the connection of the 
sequential block functions and theorems to demonstrate the invariance of certain 
properties.   
 
Any interesting proofs that take place in the system must be performed by the user 
or by third party tools that interface with vFaat through the annotation facility.  
Additionally, while proofs scripts are almost always necessary to guide the 
theorem prover in the proof process, these scripts must be coded by the user to 
target a specific theorem prover and managed by the system as necessary via 
annotations. 

3. Summary 
 

Rockwell Collins has a continuing interest in the development and verification of 
highly secure software-based communication systems.  Rockwell Collins has 
experience in the field of formal verification of computing systems and has 
constructed prototype versions of various aspects of the vFaat system for 
microcoded microprocessors targeting both the ACL2 and PVS theorem provers.  
We believe that vFaat, being processor and theorem prover independent, will 
target a wide variety of problem domains and help leverage previously developed 
verification techniques. 
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