
Two Handy update-nth Equality Rules

David Greve

Matthew Wilding

Function update-nth is an ACL2 builtin function that operates on lists.

(defun update-nth (key val l)

(declare (xargs :guard (true-listp l))

(type (integer 0 *) key))

(cond ((zp key) (cons val (cdr l)))

(t (cons (car l)

(update-nth (1- key) val (cdr l))))))

The ACL2 user who models using lists and who uses update-nth for updating

is often faced with proving the equality of terms composed of multiple calls

of update-nth. This includes ACL2 users who use stobj, which introduces

functions that are de�ned in terms of update-nth.

It was not obvious to us at �rst how best to prove these kinds of lemmas. We

initially tried to induct over the list in a manner suggested by the recursive call

of update-nth. However, after several fruitless days of trying to prove these

kinds of conjectures, we developed a di�erent strategy: rewrite a term of the

form (equal (update-nth n v l1) l2) to the conjunction of:

� l2 is identical to l1 on the values preceding the nth,

� l2 is identical to l1 on the values succeeding the nth,

� l2 has an nth element and it is identical to v.

The ACL2 book that accompanies this note contains rules that incorporate

this strategy. The rule equal-update-nth-casesplit breaks an equality term

including an update-nth into cases. A special case of this rule is used to prove

the equality of two update-nth terms where the same value being updated and

the lists being updated have the same length.

1



(defthm equal-update-nth-casesplit

(implies

(and (integerp n) (<= 0 n))

(equal

(equal (update-nth n v l1) l2)

(and

(and (equal (nth n l2) v) (< n (len l2)))

(equal (firstn n (append l1 (repeat (- n (len l1)) nil)))

(firstn n l2))

(equal (nthcdr (1+ n) l1) (nthcdr (1+ n) l2))))))

(defthm equal-update-nth-update-nth

(implies

(and (integerp n) (<= 0 n) (equal (len l1) (len l2)))

(equal

(equal (update-nth n v1 l1) (update-nth n v2 l2))

(and

(equal v1 v2)

(equal (firstn n l1) (firstn n l2))

(equal (nthcdr (1+ n) l1) (nthcdr (1+ n) l2))))))

These rules do not typically lead to a large number of cases, even for equality

expressions involving large nests of update-nths. Initially, application of one

of these rules doubles the number of update-nths in the term being simpli�ed,

but other rules eliminate update-nths. For example, when element locations

in these expressions are constants (as they typically are when reasoning about

stobjs) and one of the rules above \duplicates" a nest of update-nth function

calls, the following rules eliminate at least half the update-nth occurrences.

(defthm firstn-update-nth

(implies

(and (integerp n) (<= 0 n) (integerp n2) (<= 0 n2))

(equal

(firstn n (update-nth n2 v l))

(if (<= n n2)

(append (firstn n l) (repeat (- n (len l)) nil))

(update-nth n2 v (firstn n l))))))

(defthm nthcdr-update-nth

(implies

(and (integerp n) (<= 0 n) (integerp n2) (<= 0 n2))

(equal

(nthcdr n (update-nth n2 v l))

(if (< n2 n)

(nthcdr n l)

(update-nth (- n2 n) v (nthcdr n l))))))

The accompanying book also includes analogous rules for update-nth-array.

2


